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In the Abelian sandpile models introduced by Dhar, long-time behavior is deter~ 
mined by an invariant measure supported uniformly on a set of implicitly 
defined recurrent configurations of the system. Dhar proposed a simple proce- 
dure, the burning algorithm, as a possible test of whether a configuration is 
recurrent, and later with Majumdar verified the correctness of this test when the 
toppling rules of the sandpile are symmetric. We observe that the test is not 
valid in general and give a new algorithm which yields a test correct for all 
sandpiles; we also obtain necessary and sufficient conditions for the validity 
of the original test. The results are applied to a family of deterministic one- 
dimensional sandpile models originally studied by Lee, Liang, and Tzeng. 

KEY WORDS: Sandpiles; Abelian sandpiles; burning algorithm; limited 
local models. 

1. I N T R O D U C T I O N  

M e m b e r s  of  the class of  cel lular  a u t o m a t a  k n o w n  as sandpiles have been 
much  s tudied recent ly as models  of  "self-organized cr i t ical i ty"  in nature.  
The  first of  these models  was in t roduced  in refs. 1 and  2, and  many  others  
were defined, classified, and  s tudied in ref. 3. A relat ively t rac tab le  class of 
models ,  the Abelian sandpiles, was isola ted  and  s tudied by D h a r  ~4~ (see also 
Sect ion 2). Special  classes of  Abel ian  sandpi les  were further  invest igated in 
refs. 5-7. 

In  a l l  of  these models  an ideal ized sandpi le  evolves under  repea ted  
add i t i on  of  gra ins  of  sand. Each a d d e d  gra in  causes a t rans i t ion  of the 
sandpi le  from one stable conf igura t ion  to another ;  dur ing  this t ransi t ion,  
the sandpi le  m a y  pass  t h rough  uns table  conf igurat ions ,  in which columns 
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of sand topple and thereby transfer sand to other columns. Dhar showed 
that the long-time behavior of the Abelian models is determined by a 
simple invariant measure on the stable configurations of the system: all 
members of a certain set of recurrent configurations are equally likely. 
The recurrent configurations, however, are defined only implicitly. Dhar 
suggested that a stable configuration is in fact recurrent if and only if it 
passes a certain test; the test is implemented by a simple computation, 
called the burning algorithm in refs. 6 and 7. (Configurations passing this 
set were called allowed in ref. 4, but we will reserve that name for those 
passing a more stringent test described below.) All recurrent configurations 
were shown in ref. 4 to pass the burning algorithm test; conversely, it was 
shown in ref. 7 that if the toppling rules in the sandpile are symmetric--if 
the same amount of sand is transferred to site j when site i topples as is 
transferred to i when j topples--then all stable configurations which pass 
the test are recurrent. The burning algorithm test is not valid in general, 
however: there exist simple asymmetric sandpiles having stable configura- 
tions which pass the test but are not recurrent (see Section 4, in particular, 
Fig. 2). 

In Section 3 we define a new algorithm, the script algorithm; we call 
the test based on this algorithm the script test. Sandpile configurations 
which pass the script test are called allowed, and we show that the set of 
recurrent configurations is precisely the set of stable configurations which 
are allowed in this sense. For certain sandpiles the script algorithm reduces 
to the burning algorithm; in Section 4 we give necessary and sufficient con- 
ditions for this to occur and show that the burning algorithm test is correct 
only when these conditions are satisfied. This class of sandpiles includes 
symmetric sandpiles, by ref. 7, and many asymmetric sandpiles as well. 

Section 5 of this paper is devoted to proofs of these results. In Section 
6 we discuss a class of deterministic one-dimensional sandpile models 
originally studied by Lee, Liang, and Tzeng. (s'9) When the dynamics of 
these models is expressed in terms of local slopes (differences of heights 
of adjacent sandpile columns) the models may in fact be regarded as 
asymmetric Abelian models. The test based on the burning algorithm 
correctly predicts recurrence for these models, and the methods of the 
Abelian theory may be used to show that the deterministic dynamics has 
a unique limit cycle. 

2. D E S C R I P T I O N  OF THE M O D E L S  

To define an Abelian sandpile S we begin with a finite, nonempty set 
V of sites. A configuration z of S is an assignment of a nonnegative integer 
zi to each site i; z~ is normally to be thought of as the height of a column 
of sand at site i (although in some applications, as indicated above, it may 
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be identified with a local slope). The configuration z is stable if each height 
zi is below some threshold: zi ~< t~. If z is unstable, so that zk > tk for some 
k, then the column at site k can topple, transferring sand to other columns. 
To picture this toppling action, it is helpful to visualize the sandpile as a 
directed graph D = D(S) ,  whose vertices consist of the sites of S together 
with an additional vertex g, the ground. We write A~i for the number of 
edges which leave the vertex i t  V. A certain number, by convention 
denoted - A  a, of these lead to each vertex j ~ V which is distinct from i; the 
remainder of these edges (there are ~2j~vA0. of them) lead from i to g. 
When the column at site k topples, one grain of sand leaves this site along 
each edge of D outwardly oriented from k; those grains which go to g leave 
the system or "fall off the table." 

We take the threshold t~ to be Aii, (4) and write irk for the toppling 
operator, so that Tkz is defined when z k > A k k ,  and ( T k z ) ~ = z i - A k ~ .  

The sandpile is thus completely specified by the set V of sites and the 
square matrix A=(Ai j )g . j~v ,  which must satisfy (i) Ai i~0 if i # j  and 
(ii) ~j~vAo.>~O. 

To implement the dynamics, we will repeatedly add grains of sand to 
the system. If there is any site in D from which no (oriented) path leads to 
the ground, however, then the repeated addition of sand to that site will 
cause the total mass of the pile to increase without bound; we say that the 
sandpile is blocked Here we assume that the sandpiles we discuss are not 
blocked unless we explicitly specify otherwise. With this understanding, any 
configuration z can evolve by repeated topplings to a stable configuration; 
we denote this configuration as Tz. Dhar observes (4) that the operators T k 
have a weak commutativity property--TkTjz and T j T k z  are both defined 
and are equal whenever Tkz and Tjz are defined--and that this implies 
that the operator T is well defined (the idea behind the proof is known to 
mathematicians as the "diamond lemma ''(1~ and goes back to a paper of 
Newmann(11)). If z is any configuration and i any site, we let _~z be the 
configuration obtained from z by adding one grain of sand to site i 
[(A~z)j=z~+60],  and define Aiz=T.,~iz to be the resulting stable 
configuration. The operators Ai commute (because the T~ and Ai jointly 
have the weak commutativity property), and this commutativity motivates 
the name "Abelian" for these sandpiles. 

The dynamics of the sandpile is a Markov process on the set of stable 
configurations: one step of the dynamics is defined by choosing a site i6 V 
at random and applying A i to the current configuration--that is, adding a 
grain of sand at i and letting the pile stabilize. A stable configuration z is 
recurrent if it has nonzero weight in the (unique) invariant probability 
measure for this process; equivalently, z is recurrent if 

z = A il . . . A iaZma x (1) 

822/71/1-2-5 
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for some il,..., iN, since the maximal configuration Zma x defined by 
(Zmax)i =Aii is clearly recurrent. Dhar proved that there are precisely det A 
recurrent configurations and that these configurations are all equally likely 
in the invariant measure. 

We collect here some notation for configurations, which we think of as 
row vectors. If W is any subset of V, we write e w for the configuration with 
(ew)i= 1 if ie  W and (ew)~= 0 otherwise, and we write e~ rather than e{~}. 
In this notation, A~z=z+e~ and TkZ=Z-%A. We let 0 = e ~  and 1 = e v  
denote the configurations whose components are identically 0 and 1, 
respectively. Finally, we write z' ;~z if z'~>~z~ for all sites i, with strict 
inequality for at least one site; any configuration z satisfies 0 % z  and a 
stable configuration z satisfies z ~ Zma .. 

3. THE SCRIPT A L G O R I T H M  

We now turn to the characterization of the recurrent configurations of 
a sandpile S, and begin by explaining that in certain cases the first step is 
to decompose S into smaller sandpiles. This decomposition requires two 
new definitions. First, with any nonempty subset W of V we associate a 
new sandpile S(W), whose set of sites is W and whose toppling matrix is 
given by the restriction of A to these sites. Note that the corresponding 
directed graph D(S(W)) is obtained from D by omitting the vertices not in 
W and all edges outgoing from them, but rerouting those edges which lead 
from a vertex in W to a vertex outside W so that they lead instead to g. 
Second, calling two sites of S equivalent if they are the same or if there is 
an oriented path in D from each to the other, and letting W1... Wm be the 
equivalence classes in V under this relation, we call S(WI),..., S(Wm) the 
strong components of S (see Fig. 1); if S has only one strong component, 
we call S strongly connected. (These latter definitions correspond to the 

1 3 5 1 3 5 

S S({1,2}) S({3,4,5,6}) 

Fig. 1. A sandpile S and its strong components. Site 3 is selfish in S, but not in the strong 
component S({3, 4, 5, 6}). 



Asymmetric Abelian Sandpile Models 65 

usual notions of strong connectivity in the directed graph obtained from D 
by omitting g.) It is easy to verify the following lemma, which reduces our 
problem to the characterization of recurrent configurations of strongly 
connected sandpiles. 

I . e m m a  1. A configuration z of S is recurrent if and only if the 
restriction of z to each strong component S(Wz)  of S is a recurrent 
configuration of S(W,). 

The key idea in testing a stable configuration z for recurrence is to 
look for appropriate configurations which topple into z. Suppose in par- 
ticular that we can find a configuration z' such that z '>-z  and T z ' =  z. Let 
U be a specific (ordered) product of toppling operators T k which 
implements the reduction of z' to z, so that also Uz' = z or z' = U lz. Then 
u - m z  is defined for any positive m and T U - m z  = UmU- '~z  = z; moreover, 
U - m z ~  u - ~ m - l ~ z >  - . . .  ~ U- lz>-z ,  so that U-mz is obtained by adding 
at least m grains of sand to z. Now by toppling selected columns in U - m z  

we may redistribute this extra sand to other columns; specifically (see 
Section 5), there is a sequence of toppling operators Tkl,..., T~M such that 
if m is sufficiently large, 

z" = TkM"" Tkl U - m z ~ z m a ~  (2) 

Since z = T u - m z  = T z ' ,  z satisfies (1) and is recurrent. 
To find a configuration like z' above, we focus on the set of topplings 

which make up the transformation U, ignoring for the moment the order 
in which they are carried out. Such a set of topplings is specified by a row 
vector of nonnegative integers n -- (ni)i~ v, which we will call a script; the 
script n is associated with any transformation z -~ z - nA in which, for each 
k, the toppling operator T k acts nk times. It turns out that with each 
strongly connected sandpile S there is associated a special script N = N(S); 
N is in a precise sense the minimal nontrivial script for which N3 >-0, so 
that z + N3  ~-z for any z. [-The precise characterization of N(S), and a 
simple algorithm for its construction, are given in Lemma 7 of Section 5.] 
We will show that a stable configuration z is recurrent if and only if 
(z + Nzl) can play the role of z' in the previous paragraph, that is, if and 
only if 

T ( z + N A ) = z  (3) 

The criterion (3) may be restated in language closely corresponding to 
that of ref. 4 (see also Section 4); we make a formal definition and will 
verify its equivalence to (3) shortly. 
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D e f i n i t i o n  2. A configuration z of S is forbidden for the script n if 
for all i ~ V with n~ > 0, z~ ~< Aii - (nA)i. A configuration z is allowed if it is 
not forbidden for any script n satisfying n ~ N(S). 

As in ref. 4, there is a simple test, called the script test and imple- 
mented by the script algorithm, to determine whether or not a confi- 
guration z is allowed. The algorithm uses a recursively defined script n. 
Take initially n = N and test whether z is forbidden for n; that is, look for 
a site i such that 

n i > 0  and zi > A~-i- (nA)i (4) 

If no such i is found, then z is forbidden for n and is not allowed. On the 
other hand, if i satisfies (4), then i will also satisfy (4) if n is replaced by 
any n'-< n for which n';= n~; thus z can be forbidden only for scripts which 
have ni.< n/. Now decrease n/ by one- - tha t  is, replace n by n - e ~ - - a n d  
repeat. Continue until a script is encountered for which z is forbidden or 
until n = 0; in the latter case, z is allowed. 

To see that each allowed configuration z satisfies (3), we note that the 
application of the script algorithm to z generates a sequence il ..... iK (with 
K = ~  v N~) of sites, and corresponding scripts nl ( = N ) ,  n2 ..... nK, nK+l 
(=0) ,  where 

z~ k > A,ki~ - (nkA)~ (5) 

and n k + l =  n k -  e~ k. We claim that 

T(z + NA) = TiKTiK_I . . .  TilZ' = Z (6) 

TO verify (6) we need only to show that, for k =  1,..., K, column ik is 
unstable in T~k ~ . . .T i l ( z+NA)=z+nkA;  this is precisely the content 
of (5). 

We can summarize our discussion in a formal theorem; the remaining 
details of the proof are given in Section 5. 

T h e o r e m  3. Let S be a strongly connected sandpile which is not 
blocked. A configuration z of S is recurrent if and only if it is stable and 
allowed, that is, is stable and passes the script test. 

We close this section with two peripheral remarks. First, it is natural 
to make the convention that blocked sandpiles have no recurrent con- 
figurations, since the total mass of the pile will increase without bound as 
sand is added to randomly chosen sites. The convention is consistent with 
the counting of recurrent configurations given above: det A = 0 for blocked 
sandpiles, since det A is the number of trees in D in which each site is 
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connected by an oriented path to g.(12) With this convention it is possible 
to consider blocked sandpiles on a par with all others, but this special 
case often requires awkward special arguments, and for this reason we will 
continue to assume that no sandpiles we consider are blocked unless we 
explicitly specify otherwise. 

Second, combining Theorem 3 with Lemma 1 and the previous remark 
yields a characterization of recurrent configurations in general, possibly 
blocked, sandpiles: (i) the set of recurrent configurations of any sandpile is 
the product of the sets of recurrent configurations of its strong components; 
(ii) the set of recurrent configurations in a blocked, strongly connected 
sandpile is empty; and (iii) the set of recurrent configurations of a strongly 
connected sandpile which is not blocked consists of those configurations 
which pass the script algorithm. It is possible, but in practice inefficient, to 
unify these steps by defining a script N(S) for an arbitrary sandpile S in 
such a way that recurrent configurations of S are those which pass the 
script algorithm defined using this N(S): one simply takes N(S) as above 
if S is strongly connected and not blocked, N ( S ) =  0 if S is strongly con- 
nected and blocked, and N(S)[ wi = N(S(W~)) if S has strong components 
W1 ..... Wm. 

4. COMPARISON WITH THE BURNING ALGORITHM 

In this section we discuss the relation of Definition 2 to the definition 
of an allowed configuration given in ref. 4, which we now recall. For any 
subset W of V and site i t  W let din(i; W) denote the number of edges of the 
directed graph D which enter i from sites of W. We say that the restriction 
of a configuration z to a nonempty subset W is weakly forbidden if for all 
i t  W, zt<...din(i; W), and that z is weakly allowed if no such restriction is 
weakly forbidden (these concepts are called simply "forbidden" and 
"allowed" in ref. 4). A configuration is weakly allowed if it passes the 
burning algorithm: take initially W =  V and look for a site i t  W with 

Z i 2> din(i; W) (7) 

If no such i exists, then z is not weakly allowed; otherwise, remove i from 
W and repeat, z is allowed if eventually W is empty. 

To see the relation between the two algorithms, let us call a site i of 
S selfish if it has more incoming edges than outgoing edges in D, that is, 
if din(i; V) >Aii. If a strongly connected sandpile S has no selfish sites, then 
the sum of the rows of A is a vector with nonnegative components; this 
means that N(S) is the particularly simple script 1 (see Lemma 7). But then 
the scripts n with n ~< N are just the scripts ew for W ~  V, the configuration 
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z is forbidden for the script e w under Definition 2 precisely when its restric- 
tion to W is weakly forbidden, and a configuration is allowed precisely 
when it is weakly allowed. With the identification of W with ew, in fact, the 
script algorithm reduces precisely to the burning algorithm. Thus Theorem 
3 implies the following result. 

Corollary 4. Let S be a strongly connected sandpile which is not 
blocked. If S has no selfish sites, then a configuration z of S is recurrent if 
and only if it is weakly allowed, that is, passes the burning algorithm test. 

A sandpile is symmetric if the matrix A is symmetric. Since row sums 
of A are always nonnegative, symmetric sandpiles have no selfish sites and 
thus Corollary 4 implies that, in symmetric sandpiles, a configuration is 
recurrent if and only if it passes the burning algorithm. This result was 
obtained in ref. 7 through an ingenious correspondence between recurrent 
configurations and trees in the graph obtained from D(S) by identifying 
pairs of oppositely oriented edges. In the general case there are known (12) 
to be det A trees in D(S) in which each site is connected by an oriented 
path to g; it would be interesting to find a similar correspondence between 
recurrent configurations and these trees. 

On the other hand, there are many asymmetric sandpiles in which 
some configurations which pass the burning algorithm are not recurrent. 
An example is given in Fig. 2. In fact, in strongly connected sandpiles the 
condition that no selfish sites exist is not only sufficient but also necessary 
for all configurations which pass the burning algorithm to be recurrent. We 
state this as a theorem; the proof is given in Section 5. 

T h e o r e m  5. Let S be a strongly connected sandpile which is not 
blocked. Then every weakly allowed, stable configuration of S is recurrent 
if and only if no site of S is selfish. 

The condition of strong connectedness is important in Theorem 5, for 
in general a sandpile may have selfish sites which are not selfish in the 

1S 
J 

Fig. 2. A strongly connected sandpile in which site 1 is selfish. The recurrent configurations 
are (1, 3), (1, 4), (2, 2), (2, 3), and (2, 4); (1, 2) passes the burning algorithm test, but is not 
recurrent. 
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strong component to which they belong, and such sites do not give rise to 
weakly allowed stable configurations which are not recurrent (see Fig. 1). 
The most general statement, which follows easily from Theorem 5, is the 
following. 

Corollary 6. Let S be any sandpile. Then every allowed, stable 
configuration of S is recurrent if and only if either no strong component of 
S contains a selfish site or some strong component of S contains no selfish 
site and is blocked. 

5. P R O O F S  OF T H E  M A I N  R E S U L T S  

In this section we give (or complete) the proofs of the results of 
Sections 3 and 4. We begin by establishing the existence and some proper- 
ties of the special script N(S). 

k e m m a  7. Let S be a strongly connected sandpile which is not 
blocked. Then there exists a unique script N =- N(S) for S such that (i) 
N>-0, (ii) NA ~ 0 ,  and (iii) any script n satisfying (i) and (ii) also satisfies 
n ~ N .  Moreover, (iv) N A ~ 0 ,  (v) N ~ I ,  and (vi) (Nd)i<Aii  for all i. 
Finally, (vii) N -- 1 if and only if no site of S is selfish. 

ProoL We construct N by a "greedy" algorithm. Fix a site l and 
construct recursively scripts 0 <~ n (1)-<~n (2)-~ -. . ,  with n ~l~ = e~ and n ~k~ 
for k > l  defined by n~k)=n~- l~+ej ,  where j is any site such that 
(n~k-~)A)j<0. We claim that the algorithm eventually terminates at a 
script n ~K) for which n~K)A ~ 0. For otherwise, let W be the set of sites i for 
which n~ k) /~ ~ as k ~  ~ .  Because S is not blocked, Zj~vAu~>0 for all 
i~ W, with strict inequality for at least one i; thus Zj~ w (ntk)A)j -" ~ as 
k--* ~ .  This is a contradiction, since clearly n~A ~Zmax for all k. We now 
define N = n ~m. 

N clearly satisfies (i) and (ii), and any script satisfying (i) and (ii) 
satisfies (v), by the strong connectedness of S. If n also satisfies (i) and (ii), 
and hence (v), then we see inductively that n ~ n ~k) for all k, verifying (iii); 
(iii) in turn implies the uniqueness of N. Now, N satisfies (iv) since N3 = 0 
is impossible because S is unblocked and hence A is invertible. Again 
inductively, each n t~) satisfies (vi) for all i except possibly for i = l, and does 
for i =  1 as soon as (n(k~)j.> 0 for some j ~  l with Ajt:~ 0. Finally, if no site 
of S is selfish, then 1 satisfies (i)-(ii) and hence N = 1 by uniqueness, while 
if some site is selfish, then 1 does not satisfy (ii). | 

We can now complete the proof, begun in Section 3, of our main 
result. 
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Proof of  Theorem 3. Suppose first that the configuration z is 
allowed and stable. We proved in Section 3 that this implies that 
T(z + NA) = z, and from this it follows immediately that T(z + m N A )  = z 
for any m > 0. Since (NA)j > 0 for some j ~ V, the column of sand at site j 
in the configuration z + m N A  contains at least m grains of sand. It remains 
only to verify (2), that is, that there exists a sequence of toppling operators 
Tkl ..... Tk,  such that if rn is sufficiently large, 

z":-  Tk~. . .  Tg~( z+mN3)~Zma  X (8) 

since then z is recurrent by (1). Now for i~ V let p(i) be the length of the 
shortest (oriented) path in D(S) from j to i. We claim that for any q, L ~> 0 
and for m sufficiently large there is a configuration 

z"  = TkM, �9 �9 - Tg~(z + m N 3 )  

in which all sites i with p(i) <~ q satisfy (z ' ) i /> L. The claim is easily verified 
by induction on q, while (8) follows immediately from the claim by taking 
q maximal and L ~> max/Aii. 

To establish the converse, we simply modify the proof of the similar 
result in ref. 4. Thus, observe from Definition 2 that if z is an allowed 
configuration, then so is -~iz, and so is Tkz, when defined. To see the 
latter, suppose that n ~ N; since z is allowed, there exists a site i with 
zi > A i~ - (nA)~. If i ~ k, then also (Tgz)~ > A ii - -  ( h A ) i ,  while if i = k, letting 
n ' =  n -  ek and choosing i' to satisfy zi, > 3 r r -  (n'A)r, we have 

(Tkz)i, = Z r -  Z~ki' > Z J i i ' -  Z J k i , -  (n'A)i = Ai i , -  (nA)i 

In either case we see that Tkz is not forbidden for n. Thus, A~z is allowed 
for any i and any allowed z. Since zma x is clearly allowed, it follows from 
the characterization (1) that so is every recurrent configuration. | 

We finally prove that lack of a selfish site is a necessary and sufficient 
condition on a strongly connected sandpile in order that the original 
burning algorithm correctly characterize recurrent configurations. 

Proof of  Theorem 5. By Corollary 4 we need only show that if S 
has a selfish site, then there is a configuration of S which is stable and 
weakly allowed but not recurrent. Let z = Z,nax--Nzt. Now, z is a stable 
configuration, but is not allowed, since it does not satisfy (3), and hence is 
not recurrent. But z does satisfy the burning algorithm. For  if not, then 
there is a nonempty subset W of V such that no i~ V satisfies (7), or 
equivalently, since din(i; W) = A ii - -  (e  w A ) i ,  

(NA)~>~ (ewA)~ (9) 
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for all i t  W. But (9) holds also for ir W, since the right-hand side is then 
nonpositive; thus NA >ewA. Let n = N - e w ;  we have shown that nA ~> 0, 
and n ;> 0 by (v) and (vii) of Lemma 7, so that by (iii) of that lemma, 
n > N, contradicting the assumption that W is nonempty. II 

6. A F A M I L Y  OF D E T E R M I N I S T I C ,  O N E - D I M E N S I O N A L  
SANDPILES  

Lee, Liang, and Tzeng (8' 9) discuss a family of one-dimensional, deter- 
ministic sandpile models (limited, nonlocal models in the terminology of 
ref. 3) parametrized by a positive integer m, the maximum local slope that 
a stable sandpile configuration will support. Intuitively, a sandpile in these 
models is an array of L columns of sand, with heights h~, hz,..., hL; there 
is an infinitely high wall to the left of the first column and a table edge to 
the right of the Lth  column. The system is driven by adding grains of sand, 
one at a time, with each addition increasing some column height by one. 
When a column becomes unstable, that is, when h k -  hk+l > m for some k, 
m grains of sand topple from it, one to each of the m columns immediately 
to the right--or off the edge of the table, if some of these columns do not 
exist. If other columns become unstable as a result, they then topple in the 
same fashion; the process continues until a stable configuration is reached, 
after which another grain is dropped. Here, as in refs. 8 and 9, we drop 
sand only on the first column. Under this driving mechanism the column 
heights may consistently be assumed to satisfy hi/> h2/> -.. /> hL ~> 0. 

As described, this system is not in the class of Abelian sandpile models. 
Consider, however, the representation in terms of local slopes: 

~hk-hk+ l if k < L  
x k = [ h L  if k = L  

Here column j topples when xj > m; the resulting configuration Tjx is given 
by 

( xi+m if i = j - 1  
=~xj--m--(1--,SiL ) if i = j  

(Tjx)/ ~ x / + l  if i=min(L, j+m) 
kx~ otherwise 

This is an Abelian toppling rule, but for the first L - 1  columns the 
threshold does not satisfy the convention tk = Ak~, since tk = m  for all k, 
but Akk = m + 1 for 1 ~<k~< L - 1 .  The configuration variable z given by 
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z i = x ~ +  1--(~iL, however,  does satisfy the toppling rule of a s tandard 
Abelian sandpile S. For  L > m the toppling matrix is 

, : ~  ( L )  = 

m + l  0 .-. 0 - 1  0 

- -m m + l  0 . . .  0 - 1  

0 - m  m + l  0 --- 0 

�9 .. 0 - m  m + l  0 

�9 .. 0 - m  m + l  

�9 � 9  , , 

' ' '  0 

m 

, . .  

- 1  0 .-- 

�9 .. 0 - 1  

0 . . . .  1 

- -m m + l  --1 

0 - m  m 
I 

(10) 

and the directed graph D(S)  is shown in Fig. 3; for L ~< m the toppling 
matrix is the lower right L x L  block of  (10) and the directed graph is 
obtained by the corresponding modification of Fig. 3. 

It  is impor tan t  to observe that  the model  is Abelian only when 
appropria te ly  driven, that  is, driven in such a way that the variables zi 
increase when sand is dropped�9 The fundamental  opera tor  Ai given by 
. 4 i z = z +  ei corresponds in the original physical model  to dropping  one 
grain of sand onto  each of the first i columns of the sandpile. The driving 
mechanism studied in ref. 8 is just an iteration of A1 and thus fits into the 
Abelian formalism, but driving by dropping  sand on a single column other 
than the first does not. 

F r o m  (10) or  Fig. 3 it is clear that  S has no selfish sites, so that  by 
Corol lary  4 the burning algori thm correctly predicts the recurrent con- 
figurations�9 These are easily seen to be precisely those observed in ref. 8: 
z is recurrent if (i) zk >~ 1, for all k, and (ii) at least one element of the 
sequence Zc_z L ..... ZL_z, ZL_I ,  and of every sequence zj, . . . ,zj+,, ,_l with 
1 ~< j ~< L - m, is equal to m + 1. The number  of such configurations may  be 

1 2 3 m+l m+2 m+3 L-2 L-1 L 

Fig. 3. The directed graph of the Abelian sandpile associated with a one-dimensional limited 
nonlocal model, in the ease L > m. Here rn edges join site 1 to ground and join each site i to 
site i - - l ,  for i>1; one edge joins each site i to site i+m if i+m<,L and to site L if 
L -  m < i < L, so that one edge enters site L from each of the preceding m sites. 
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calculated directly or obtained from (10) by expanding det A along the first 
column, leading to 

de tA(L~={( (m++l)de tA(L-1) - -mL-1  if 2-%<L~<m+ 1 
1 ) d e t A ( L - 1 ) - m m d e t A  (L-m- l )  if L > m + l  

Since det A (1)= m, this recursion implies that det A(L~= m L. 
Of course, the general theory implies only that these configurations are 

recurrent under the joint action of A 1 ..... AL. For  the deterministic model, 
driven by iteration of A1, what is relevant is the structure of orbits within 
the set of recurrent configurations under the action of A I. It is shown in 
ref. 9 that there is in fact a single orbit, that is, that A1 acts transitively on 
the recurrent configurations. We give in the next paragraph an alternative 
proof based on the Abelian sandpile interpretation. 

Dhar (4) shows that the A/, as operators on the recurrent configura- 
tions, form a group which is generated precisely by the commutativity 
relations AiA j=  A j A / a n d  the relations 

L 

H A~ ')= 1, i =  1,..., L (11) 
j = l  

Let p be the order of A1 in this group; to prove transitivity of A1, we must 
show that p = m L. The relation Af  = 1 must be a consequence of (I1), that 
is, there must exist a row vector q with integer entries such that 

1 Af = 1 r 1 = Af  'j = l-I A) q~)j (12) 
i = 1  j = l  

- 1 .  in particular, qL Thus, (qA)j = P61j and hence qi = pAl~ , = 
p ( - 1 )  L+I X/det A, where X is the determinant of the ( L - 1 ) x  ( L - 1 )  
block in the upper right-hand corner of A. But X is relatively prime to m, 
since reducing all elements of this block modulo m leads to a block 
whose entries are all 0 or + 1 and whose determinant involves a single 
product of the nonzero entries [keeping track of signs we find that 
( - 1 ) L + l  X--  = 1 mod m]. Since ql must be an integer, p = m  L. 
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